Tel: 86-755-23725796     Mobile: +86-13480995660

News Center

Home > News Center > Content

The Step Of Printed Circuit Board (PCB) Design

MOKO Technology Ltd | Updated: Jun 07, 2017

The Step of Printed Circuit Board (PCB) Design

Printed circuit boards (PCBs) serving as the “brains” of any powered device. Designing PCBs for engineer is the same as HTML for web development —the backbone that makes it all possible. That’s because no powered device works without a PCB of some sort. From Bluetooth module and remote controls to robotics and toys, PCBs provide electricity and connectivity between the components of a device, allowing it to play a role it was designed.

Let’s look at what goes into this technology and what you need to know to get started designing a PCB for your next embedded system project.

n  PCBS ON THE RISE: POWERING THE CONNECTED DEVICES OF THE IOT

PCB design has been existed for decades, but its relevance is back in the spotlight. They originally came about to answer the need for smaller, more efficient ways to power electronics. In the age of the Internet of Things (IOT) where everyday devices with embedded systems are becoming Internet-connected devices, PCB design is still meeting that need, while growing more advanced, and more in demand.

The IOT has brought us the ability to control objects and devices remotely. All of a sudden, household objects are mini-computers, able to be turned on through a mobile app. Wearables track our steps, and smart thermostats track our environments. Cars can monitor themselves, and bridges can sense structural failure. All of this requires hardware, software, and power.

For many of these devices to be “smart,” they need to have PCBs. So what are PCBs exactly? and how are they made? Let’s analyze the basics.

n  DESIGNING, PRINTING, AND MANUFACTURING A PCB

A PCB design expert can assist you in assembling a top-quality PCB according to your specific technological needs. A PCB designer will provide an in-depth analysis of your device’s requirements to ensure your product has the support necessary to excel in the competitive tech market. They’ll have access to all of the latest software and are well-versed in the best design strategies.

Once you have a PCB designer and you’ve gotten them up to speed on your project requirements, there are a few steps they’ll go through. Here’s a quick overview of the process.

n  THE SCHEMATIC FOR THE CIRCUIT IS DESIGNED.

First, a designer will create the schematic. A schematic is a vital step before designing the board itself and should never be overlooked. A schematic is like a roadmap for a circuit, containing a series of symbols that represent aspects of the circuit: switches, resistors, diodes, nodes, and more. This is also helpful later on for troubleshooting any issues with your PCB.

n  USING EDA (OR, ECAD) SOFTWARE, THE BOARD DESIGN IS LAID OUT.

After the circuit design is captured in a schematic, it’s translated into an electronic design automation (EDA) software package like Altium Designer. KICAD, Eagle, Allegro, or Express PCB. The design has to be exported into an industry standard format (e.g., the Gerber format, the default “language” used to describe PCB components). The resulting file acts as a set of instructions for the production phase of a PCB.

n  THE PCB IS PRINTED, FABRICATED, AND ASSEMBLED.

Once you have a Gerber or CAD file, you can manufacture your PCB. The dimensions of the PCB—along with how many layers it will be—are decided, and all of the components are positioned, ground, and laid out, and signal traces dictated by the Gerber file. There are different requirements for different boards, so your PCB designer will be able to tell you whether you need surface mount (SMT), through-hole, single- or double-sided fabrication, and more details.

If you’re looking forward to rapidly prototyping a PCB, using a 3D printer is an efficient way to whip up designs and test them on the fly.

n  TEST A PCB FOR FUNCTIONALITY.

Finally, AOI and X-ray testing will make sure your PCB is structured properly once it’s been fabricated. The goal here is to test every possible output to ensure the PCB is functioning as the designer intended it to. Compared with visual test, which only tests inputs and outputs without looking at the specifics, AOI and X-ray focus on the each possible pathway of the PCB to make sure there are no failures.



MOKO Technology Ltd